10x^2-25x=125

Simple and best practice solution for 10x^2-25x=125 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10x^2-25x=125 equation:



10x^2-25x=125
We move all terms to the left:
10x^2-25x-(125)=0
a = 10; b = -25; c = -125;
Δ = b2-4ac
Δ = -252-4·10·(-125)
Δ = 5625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{5625}=75$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-75}{2*10}=\frac{-50}{20} =-2+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+75}{2*10}=\frac{100}{20} =5 $

See similar equations:

| 9x+5(8x+2)=10 | | 640x+440x+26400=1322400 | | 6x-2+6x-7=180 | | 5x²-55x+140=0 | | (4x+1)+(2x−6)+(6x−7)=180 | | 14x2x=5x+5 | | -2(t-4)=10–2t | | (3x-7)÷2x=2 | | 4x−1=x+18+x−5 | | (4x−1)=(x+18)+(x−5) | | w+8=48 | | 4q-1=117 | | 5x2+14x+10=0. | | 2(4x+1)=2x | | x=-5/9x+2= | | 2c-4=5c+3 | | (3x+19)+(4x−11)+(7x+4)=180 | | 5^10x=13^x+10 | | 3^2x+4=3×243 | | 9=7v+2 | | x^2-2x-26=54 | | q/2q-6=18 | | x^2+14-34=5x+2 | | 5(-5+2x)-4x=-13 | | x+(2x−1)+2(3−x)=(x−2)+(4x+1) | | -5x-16-32x=6x+10x-16 | | -5x-16-32x=6+10x-16 | | 12x-14=7x+6 | | x+(x+1)(x+2)+x=366 | | 8=5-12x | | -20t=-40 | | k3−3=5 |

Equations solver categories